

### **HCAL DCS Overview**

H C A

#### HCAL DCS

D.Lazic, FNAL

D.Lazic, DCS WG Meeting 2001.04.25



## **HCAL half-barrel**

н





# **Building 186 - today**

H C A L







L



# **HB Optics Overview**

H C A

Layer to Tower Decoding Fiber





# **Optics-Megatiles**

H C A L

LAYER 11 MEGATILES, TOP VIEW



Components are the machined scintillator plates, cover plates, fiber assembly (WLS spliced to clear fiber, optical connector) pigtails



# **Optics-Megatiles**

#### С

Н

#### Cross section view of a megatile





## HB RBX (rφ,z) view and (rφ,r) view



R. FOLTZ, FERMI LAB J. MARCHANT, UNIV. OF NOTRE DAME AS OF 23 FEBRUARY 2001 9 AM CST



## **RBX Summary**

C A

Н

| HB: | 36 RBX, 4968 channels    |
|-----|--------------------------|
| HE: | 36 RBX, 3672 channels    |
| HO: | 36 RBX, 2304 channels    |
| HF: | 36 wedges, 2484 channels |



# DCS Tasks

H C A

1

•HV power supplies
•LV power supplies
•Monitor RBX temperatures
•Downloading FE constants
•Laser Calibration System
•LED Calibration System
•Source Calibration System





- Communication through CAN-bus interface
- Contains Clock and Control Module (including TTCrx)
- Contains calibration module with LED driver and fiber splitter for laser light
- Monitoring of temperatures and LV in RBX



# **Status**

H C A

#### **Systems**

•LV control system

•HV control system

Radioactive source calibration system

Laser and LED calibration system

•RBX control and monitoring

More info at http://cmshcal.web.cern.ch/cmshcal/DCS/

The systems that were described up to now are only "leaves" and "nodes" in PVSS II parlance.



# HCAL Tree (I)

#### What about the whole tree?

S. Sergueev is studying that issue too. A program that reads structure of HCAL PVSS II tree has been developed in order to better see the tree structure, number and interdependence of data points.It is certainly not the final version, but we still got some time to fix it.



# HCAL tree (II)

| View tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - <u>-</u>                                                                                                                                                         | tree.txt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| <ul> <li>HCAL</li> <li>Partitioning</li> <li>Mode</li> <li>LaserCalibration</li> <li>HE</li> <li>Partitioning</li> <li>HEPlus</li> <li>HEMinus</li> <li>Partitioning</li> <li>SourceCalibration</li> <li>HV</li> <li>EV</li> <li>Wedge0</li> <li>Wedge1</li> <li>Wedge2</li> <li>Wedge3</li> <li>Wedge4</li> <li>Wedge5</li> <li>Wedge6</li> <li>Wedge6</li> <li>Wedge7</li> <li>Wedge8</li> <li>Wedge9</li> <li>Wedge9</li> <li>Wedge9</li> <li>Wedge9</li> <li>Wedge10</li> <li>Wedge11</li> <li>Wedge11</li> <li>Wedge12</li> <li>Wedge11</li> <li>Wedge11</li> <li>Wedge12</li> <li>Wedge11</li> <li>Wedge13</li> </ul> | Fediting root.txt<br>Save+Exit<br>Save+Exit<br>HCAL<br>SL prtng.txt<br>Mode<br>??????<br>SL LaserCalib.txt<br>HE<br>SL prtng<br>HEPlus<br>HEMinu<br>HB<br>SL prtng | ave As Den New file           ave As         Open         New file           L prtng.txt         SourceCalibration         \$L HESrcCalib.txt           \$L HcalGeneric.txt         \$L HESrcCalib.txt         \$L HESrcCalib.txt |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29384 Items in tree                                                                                                                                                | HCAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in the second |

# Tree browser and editor at http://home.cern.ch/sergueev/hcal



# HV Control system (I)

H C A



- Main elements are ready
- Prototype is working
- Needs modification



# HV Control system (II)

H C A

L

#### To control HV system the Framework will be used









- Based on ELMB
- Classic task for SCADA => could be solved by SCADA tools
- Use of ATLAS design











# Clock and Control Module(I)

C A

#### One clock and control module per RBX

• Star configuration, not daisy chained

#### **Control functions**

- Download the Channel Control ASICs
- Readback (verify) the Channel Control ASICs
- Configure the TTC Rx
- Readback the electronics temperatures
- Readback the low voltage supply values
- Execute master reset on command
- Translate between fieldbus and RBX serial bus









### **Candidate Parts**

| Part Number                       | Availability       | Radiation Tolerance                                                    |
|-----------------------------------|--------------------|------------------------------------------------------------------------|
| Philips PCA82C250N                | Checking           | ATLAS Tile Calorimeter & ATLAS DCS                                     |
| Hewlett Packard HCPL-0601/0731    | Stock              | ATLAS Tile Calorimeter & ATLAS DCS                                     |
| Analog Devices ADG706BRU          | Checking           | Fermi Lab will test.                                                   |
| Siemens/Infineom SABC505CA4EMTR   | Checking           | ATLAS Tile Calorimeter used a C501                                     |
| Philips P87C591VFAA               | 18 wk – Lead time  | Checking if fab process is similar - PCA82C250N                        |
| AMD AM29F010                      | Stock              | ATLAS Tile Calorimeter                                                 |
| Texas Instruments 74HC05          | Stock              | Fermi Lab will test.                                                   |
| National Semiconductor DS90LV110  | Preliminary Part   | Checking with National in regards to possible testing.                 |
| National Semiconductor DS92LV090A | Production/Samples | Checking with National in regards to possible testing.                 |
| National Semiconductor DS90LV031A | Stock              | National Semiconductor Enhanced Solutions<br>Radiation Assured Product |
| Analog Devices AD590KH            | Stock              | Fermi Lab will test.                                                   |
| XILINX Virtex FPGA                | Stock              | http://www.xilinx.com/appnotes/VtxTest.pdf                             |



C A

н

#### Note that:

- This module performs a number of DCS tasks
- We are relying on CAN bus as the communication medium with CCM
- There is a number of possible components under investigation
- Reliability and simplicity are dominant criteria



# **Calibration**

C A

н

All HCAL calibration tasks are done at low rate outside data-taking runs. DCS provides excellent tools for these tasks.

#### Moving Wire radioactive source calibration

Source Co60, 2mC

Carries calibration from test beam to CMS detector by taking ratio of source/(test beam), then re-measuring source at CMS.

**Generates about 5nA current into the electronics** 

#### **Laser Calibration System**

Exercise electronics over full dynamic range, get slopes/crossovers for QIE ranges.

Set up timing of detector. Hits every channel with pulse of known timing.

#### **LED Calibration System**

Useful in factory for "heartbeat" signal or for troubleshooting between runs.



The number of source drivers per HCAL subsystem is: 6 for HE, 4 for HB, and 4 for HF. One PC can control up to eight source drivers. Each driver is controlled by 8 bits sent through PCI TTL I/O card (max 8 cards) to the corresponding Control box.

There are three distinct tasks for the control of the source system:

Program and control source movements;
 Read out the electronics and
 Collate the source position with the readout values

There is a stand-alone system at CERN, used in HCAL test beams. CDF has similar system integrated in their DAQ/DCS.



### **Source Driver**





### **Source Driver Scheme**

C A

L

Н





н

LED driver is being integrated into the calibration module right now. We can deal with it only when the design work is finished. Up to then, we will use the NIM format of the same driver.

Calibration module contains splitter for laser light coming from a single UV laser situated in the underground control room. The task for the near future is to translate into PVSS II or put a wrapper around the driver code of the stand-alone laser system.



### **Calibration Module**

H C A





# **Stand-alone Laser System**

C A

L

Н





# **Integrated Laser System**

C A L

Н





# Summary

- Half of the HB is here. This summer we will have to load scintillators and perform radioactive source scans as a part of QC/QA.
- It is an excellent opportunity to work on a small scale DCS majority of components will be here.
- All systems exist in stand-alone version, some of them are under transition towards PVSS II compatible systems. More to come...
- We identified the most important tasks and detailed requirements for each of them are being defined.
- We are not forgetting "the big picture", i.e. the place of HCAL DCS within entire CMS (naming scheme is becoming urgent, JCOP (CMS) framework also).



- 1. Keep it simple
- 2. Use modular design
- 3. Decouple custom software from PVSS II
- 4. Reuse existing software wherever possible